搜索

图片展示

图片展示

图片展示
图片展示

一文理清智能制造术语

2023-01-14 20:20:06

智能制造术语源于日本在1990年所倡导的“智能制造系统(IMS)”国际合作研究计划。在国务院2015年发布的《中国制造2025》中,阐明了智能制造是主攻方向,让

智能制造术语源于日本在1990年所倡导的“智能制造系统(IMS)”国际合作研究计划。在国务院2015年发布的《中国制造2025》中,阐明了智能制造是主攻方向,让该术语再次在国内流行。今天的智能制造与30多年前的“智能制造系统”在内涵上是有区别的。


德国工业4.0小组在《德国工业 4.0 战略计划实施建议》中推出通过“三项集成”实现智能化生产与服务模式。即以智能工厂为单元,“将各种不同层面的IT系统集成在一起(例如执行器与传感器、控制、生产管理、制造和执行及企业计划等不同层面)”,实现纵向集成和网络化制造系统(企内链);“通过产品全生命周期和为客户需求而协作的不同公司,使现实物理世界与赛博世界完成整合”,实现产业链以及生产者与消费者的端到端集成(价值链);“将各种使用不同制造阶段和商业计划的IT系统集成在一起,这其中既包括一个公司内部的材料、能源和信息的配置,也包括不同公司间的配置”,实现企业生态圈的横向集成与社会化协作

智能制造聚焦在制造领域,基本上与德国工业4.0实现对标,强调CPS是使能技术。德国工业4.0组件参考架构模型(RAMI4.0[6],对CPS进行了较为准确的定义和技术阐述。2013年的RAMI4.0版本主要论述CPS,而2019年的版本增加了对数字孪生的论述。可见工业4.0本身就包含了CPS和数字孪生。智能制造亦是如此。


智能制造,基于CPS技术构建状态感知-实时分析-自主决策-精准执行-学习提升的数据闭环,以软件形成的数据自动流动来消除复杂系统的不确定性,在给定的时间、目标场景下,优化配置资源的一种制造范式。”该定义所涉及的各项基本要素是:


智能机理:状态感知-实时分析-自主决策-精准执行-学习提升,系统按照场景而不是按照固定程序来自主工作;

操作对象:数据(信息与知识的载体);

使能:软件中的算法与规则(数字化知识);

本质:数据自动流动,并因自动流动而形成信息/知识泛在;

目的:消除工业复杂系统的不确定性;

约束:给定时空场景;



从企业资产的角度来说,可能分属于不同的企业/工厂/车间,具有不同的工作场景,组成上相对封闭与固化,因此用长方框来组合表达。从物理实体设备感知和采集的数据上行到数字孪生体,数字孪生体设备发出的控制指令下行到物理实体设备。


模型是构建数字孪生的核心,在机理模型上,可以由数//化模型、因果模型、功能模型、系统模型、详细设计模型、仿真分析模型等组合构成,在数据分析模型上,也可以由机器学习模型、经验模型、降阶模型、故障模型等构成。机理模型与数据分析模型的综合应用,构成了数字孪生的模型来源。


数据是体验数字孪生的基础。数字虚体藉由传感器等获得的数据,能不能实时、准确地反映物理实体设备的工作状态,如果网络有一定的时延,时延到底是多少?如果现场有一定的干扰,干扰数据能不能排除?等等,都是数字孪生技术需要研究和解决的问题。如果这些问题不能解决,体验就变成了表演,仿真也就成了“仿假”,数字孪生体也就变成可以人为设置的数字动画。


仅有模型和数据这两个关键要素,仍然不足以完整描述数字孪生。数字孪生所要达到的数字体验,必须要让人用五官感受到,其中最主要的感受是让人看到——即模型、数据的可视化,这个任务必须由而且只能由软件来实现。无疑,软件是数字孪生要素的载体。




一文理清智能制造术语

2023-01-14 20:20:06

智能制造术语源于日本在1990年所倡导的“智能制造系统(IMS)”国际合作研究计划。在国务院2015年发布的《中国制造2025》中,阐明了智能制造是主攻方向,让

智能制造术语源于日本在1990年所倡导的“智能制造系统(IMS)”国际合作研究计划。在国务院2015年发布的《中国制造2025》中,阐明了智能制造是主攻方向,让该术语再次在国内流行。今天的智能制造与30多年前的“智能制造系统”在内涵上是有区别的。


德国工业4.0小组在《德国工业 4.0 战略计划实施建议》中推出通过“三项集成”实现智能化生产与服务模式。即以智能工厂为单元,“将各种不同层面的IT系统集成在一起(例如执行器与传感器、控制、生产管理、制造和执行及企业计划等不同层面)”,实现纵向集成和网络化制造系统(企内链);“通过产品全生命周期和为客户需求而协作的不同公司,使现实物理世界与赛博世界完成整合”,实现产业链以及生产者与消费者的端到端集成(价值链);“将各种使用不同制造阶段和商业计划的IT系统集成在一起,这其中既包括一个公司内部的材料、能源和信息的配置,也包括不同公司间的配置”,实现企业生态圈的横向集成与社会化协作

智能制造聚焦在制造领域,基本上与德国工业4.0实现对标,强调CPS是使能技术。德国工业4.0组件参考架构模型(RAMI4.0[6],对CPS进行了较为准确的定义和技术阐述。2013年的RAMI4.0版本主要论述CPS,而2019年的版本增加了对数字孪生的论述。可见工业4.0本身就包含了CPS和数字孪生。智能制造亦是如此。


智能制造,基于CPS技术构建状态感知-实时分析-自主决策-精准执行-学习提升的数据闭环,以软件形成的数据自动流动来消除复杂系统的不确定性,在给定的时间、目标场景下,优化配置资源的一种制造范式。”该定义所涉及的各项基本要素是:


智能机理:状态感知-实时分析-自主决策-精准执行-学习提升,系统按照场景而不是按照固定程序来自主工作;

操作对象:数据(信息与知识的载体);

使能:软件中的算法与规则(数字化知识);

本质:数据自动流动,并因自动流动而形成信息/知识泛在;

目的:消除工业复杂系统的不确定性;

约束:给定时空场景;



从企业资产的角度来说,可能分属于不同的企业/工厂/车间,具有不同的工作场景,组成上相对封闭与固化,因此用长方框来组合表达。从物理实体设备感知和采集的数据上行到数字孪生体,数字孪生体设备发出的控制指令下行到物理实体设备。


模型是构建数字孪生的核心,在机理模型上,可以由数//化模型、因果模型、功能模型、系统模型、详细设计模型、仿真分析模型等组合构成,在数据分析模型上,也可以由机器学习模型、经验模型、降阶模型、故障模型等构成。机理模型与数据分析模型的综合应用,构成了数字孪生的模型来源。


数据是体验数字孪生的基础。数字虚体藉由传感器等获得的数据,能不能实时、准确地反映物理实体设备的工作状态,如果网络有一定的时延,时延到底是多少?如果现场有一定的干扰,干扰数据能不能排除?等等,都是数字孪生技术需要研究和解决的问题。如果这些问题不能解决,体验就变成了表演,仿真也就成了“仿假”,数字孪生体也就变成可以人为设置的数字动画。


仅有模型和数据这两个关键要素,仍然不足以完整描述数字孪生。数字孪生所要达到的数字体验,必须要让人用五官感受到,其中最主要的感受是让人看到——即模型、数据的可视化,这个任务必须由而且只能由软件来实现。无疑,软件是数字孪生要素的载体。




  • 广东文智武能系统科技有限公司
  • TEL:+86-18688862839
广东文智武能系统科技有限公司

广东省广州市花都区迎宾大道东碧桂园星港国际A4栋404室

186-8886-2839

文武集团

智造动态

文智方案

武能实施

数智应用

智能互动

文智武能公众号

文武企培公众号

抖音号二维码

合作伙伴

©  文智武能科技  All Rights Reserved.  粤ICP备2022096908号

添加微信好友,详细了解产品
使用企业微信
“扫一扫”加入群聊
复制成功
添加微信好友,详细了解产品
我知道了